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1 FRAMEWORK DETAILS

1.1 Stroke Representation

1.1.1 Width Factor Updating. The strokes are represented in a relative manner in our framework. That is, we need
to use the ending point of a stroke from last time step as the starting position for the next stroke, so that a quadratic
Bézier curve can be formed. Since the stroke representation 𝑎𝑡 in Eq. (1) in main paper contains the width factor𝑤𝑡 , we
need to use the width factor𝑤𝑡−1 from last time step as the width (𝑟0)𝑡 for starting position for the next Bézier curve
𝑞𝑡 , as shown in Eq. (3) in main paper.

Because of the scalable window in our model, the size of two consecutive windows might be different. As a relative
value based on the window size, when the width factor from last time step is used for the next window, it should be
scaled to adapt to the new window. Practically, we re-define the (𝑟0)𝑡 in Eq. (3) in main paper as:

(𝑟0)𝑡 = 𝑤 ′
𝑡−1, (1)

where𝑤 ′
𝑡−1 is the scaled width from last time step. The scaling process is:

𝑤 ′
𝑡 = 𝑤𝑡 × (𝑊𝑡−1/𝑊𝑡 ), 𝑤 ′

𝑡 = min(1.0,𝑤 ′
𝑡 ), (2)

where𝑊 denotes the window size and ·̂ the original values after relative scaling. min operations performing value
clipping is adopted to avoid the out-of-bounds issue. In the experiments, we set initial values𝑤 ′

0 = 0.01.

1.1.2 Differentiable Pen State Binarizing. The differentiable softargmax operation introduced in Section 3.2.1 is formu-
lated as:

softargmax(𝑥) =
∑
𝑖

𝑒𝛽𝑥𝑖∑
𝑗 𝑒

𝛽𝑥 𝑗
𝑖, (3)

where 𝑒𝑦𝑖∑
𝑗 𝑒

𝑦𝑗 is the standard softmax operation and
∑
𝑖 𝑧𝑖𝑖 is the expectation for the index of the maximum probability.

The 𝛽 is to raise the maximum value and lower the others for a more accurate index. We note that this operation is
a trade-off between accuracy and the intensity of gradients, which means a bigger 𝛽 leads to a smaller amount of
gradients.
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1.2 Stroke Generator

1.2.1 CNN Encoder. Apart from the patches cropped from the input image ∈ R3×128×128 and canvas ∈ R1×128×128, as
well as the resized entire image ∈ R3×128×128 and canvas ∈ R1×128×128, we use the cursor position ∈ R2 as additional
input. The cursor position is tiled to spatial maps ∈ R2×128×128.

The architecture of CNN encoder is shown in Table 1. At the first layer of the encoder, we employ CoordConv [Liu
et al. 2018] to boost the encoding of spatial relation between global images and local patches. The image features
∈ R512×4×4 are flattened to feature vector ∈ R8192. Then a fully connected layer converts the feature vector to image
embedding 𝑧𝑡 ∈ R128.

Table 1. Architecture of CNN encoder.

Layer Type Kernel Size Stride Normalization Function Activation Function Output

Input - - - - 10 × 128 × 128
CoordConv - - - - 12 × 128 × 128

Convolutional 3 × 3 2 Instance Norm. ReLU 32 × 64 × 64
Convolutional 3 × 3 1 Instance Norm. ReLU 32 × 64 × 64
Convolutional 3 × 3 2 Instance Norm. ReLU 64 × 32 × 32
Convolutional 3 × 3 1 Instance Norm. ReLU 64 × 32 × 32
Convolutional 3 × 3 2 Instance Norm. ReLU 128 × 16 × 16
Convolutional 3 × 3 1 Instance Norm. ReLU 128 × 16 × 16
Convolutional 3 × 3 1 Instance Norm. ReLU 128 × 16 × 16
Convolutional 3 × 3 2 Instance Norm. ReLU 256 × 8 × 8
Convolutional 3 × 3 1 Instance Norm. ReLU 256 × 8 × 8
Convolutional 3 × 3 1 Instance Norm. ReLU 256 × 8 × 8
Convolutional 3 × 3 2 Instance Norm. ReLU 512 × 4 × 4
Convolutional 3 × 3 1 Instance Norm. ReLU 512 × 4 × 4
Convolutional 3 × 3 1 Instance Norm. ReLU 512 × 4 × 4

1.2.2 RNN Decoder. At each time step 𝑡 , the RNN decoder takes as input the image embedding 𝑧𝑡 ∈ R128 and
the previous hidden state ℎ𝑡−1 ∈ R256. In the implementation, besides the two factors above, we use the following
additional three inputs: (1) previous width factor𝑤𝑡−1 ∈ R for the prediction of𝑤𝑡 because the their corresponding
endpoints form a shared stroke; (2) previous cursor 𝑄𝑡−1 ∈ R2 to tell the model not to draw outside the full canvas;
(3) Δ𝑆𝑢𝑝

𝑡−1 =𝑊𝑡−1/𝑊𝐼 ∈ R and Δ𝑆𝑏𝑜𝑡𝑡𝑜𝑚
𝑡−1 =𝑊𝑡−1/𝑊𝑚𝑖𝑛 ∈ R to suggest the model not to scale the window beyond the

upper and bottom bound. The output 𝑜𝑡 ∈ R256 of RNN is then converted to stroke parameters 𝑎𝑡 ∈ R7 through a fully
connected layer.
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1.3 Coordinate System Change in Differentiable Pasting
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Fig. 1. Aligned cropping and differentiable pasting.

In Fig. 1, we define original image space as coordinate system 𝐶𝑜𝑜𝑟𝑑 and the rendered (or cropped) patch space as
coordinate system𝐶𝑜𝑜𝑟𝑑 ′.𝑄/𝑊 and𝑄 ′/𝑊 ′ denote the cursor/window size under𝐶𝑜𝑜𝑟𝑑 and𝐶𝑜𝑜𝑟𝑑 ′, respectively.𝑤𝑖𝑛1
represents cropping window (black lines) in Fig. 1-(a), and𝑤𝑖𝑛2 the one (black lines of yellow region) in Fig. 1-(b). For
example,𝑊𝑤𝑖𝑛1 = 3.7 and𝑊 ′

𝑤𝑖𝑛1 = 2. Note that𝑊 ′
𝑤𝑖𝑛1 =𝑊𝑟 .

The aligned cropping operation depends on cursor and window size (𝑄𝑤𝑖𝑛1,𝑊𝑤𝑖𝑛) from cropping window 𝑤𝑖𝑛1
under the base coordinate 𝐶𝑜𝑜𝑟𝑑 . So during pasting (i.e., another kind of aligned cropping), our goal is to compute
(𝑄 ′

𝑤𝑖𝑛2,𝑊
′
𝑤𝑖𝑛2) for cropping window𝑤𝑖𝑛2 under 𝐶𝑜𝑜𝑟𝑑 ′. This is done by first computing (𝑄𝑤𝑖𝑛2,𝑊𝑤𝑖𝑛2) under 𝐶𝑜𝑜𝑟𝑑

and then conversing them to 𝐶𝑜𝑜𝑟𝑑 ′. The computation steps are as follows:
(1) Position of𝑤𝑖𝑛1 under 𝐶𝑜𝑜𝑟𝑑 : the top-left position 𝑃

↖
𝑤𝑖𝑛1 and bottom-right position 𝑃

↘
𝑤𝑖𝑛1 of𝑤𝑖𝑛1 are:

𝑃
↖
𝑤𝑖𝑛1 = 𝑄𝑤𝑖𝑛1 −𝑊𝑤𝑖𝑛1/2.0, 𝑃

↘
𝑤𝑖𝑛1 = 𝑄𝑤𝑖𝑛1 +𝑊𝑤𝑖𝑛1/2.0. (4)

(2) Position of𝑤𝑖𝑛2 under𝐶𝑜𝑜𝑟𝑑 :𝑤𝑖𝑛2 is the bounding box of rendered patch (dashed grid in Fig. 1-(b)) within𝑤𝑖𝑛1.
Its top-left and bottom-right positions are:

𝑃
↖
𝑤𝑖𝑛2 =

⌊
𝑃
↖
𝑤𝑖𝑛1

⌋
, 𝑃

↘
𝑤𝑖𝑛2 =

⌈
𝑃
↘
𝑤𝑖𝑛1

⌉
. (5)

(3) Cursor and window size of𝑤𝑖𝑛2 under 𝐶𝑜𝑜𝑟𝑑 : they are calculated according to the bounding box:

𝑄𝑤𝑖𝑛2 =
(
𝑃
↖
𝑤𝑖𝑛2 + 𝑃

↘
𝑤𝑖𝑛2

)
/2.0, 𝑊𝑤𝑖𝑛2 = 𝑃

↘
𝑤𝑖𝑛2 − 𝑃

↖
𝑤𝑖𝑛2 . (6)

(4) Changing from 𝐶𝑜𝑜𝑟𝑑 to 𝐶𝑜𝑜𝑟𝑑 ′:

𝑄 ′
𝑤𝑖𝑛2 =

(
𝑊 ′

𝑤𝑖𝑛1/𝑊𝑤𝑖𝑛1
)
×
(
𝑄𝑤𝑖𝑛2 − 𝑃

↖
𝑤𝑖𝑛1

)
,

𝑊 ′
𝑤𝑖𝑛2 =

(
𝑊 ′

𝑤𝑖𝑛1/𝑊𝑤𝑖𝑛1
)
×𝑊𝑤𝑖𝑛2 .

(7)
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After the coordinate system change for the cursor and size of window 𝑤𝑖𝑛2 in Fig. 1-(b), differentiable pasting is
performed as an aligned cropping process, and produces the patch in yellow region. By padding the left pixels with
constant values, a pasted canvas in full resolution is obtained, which is able to propagate the gradients derived from the
raster-level loss to the floating-number cursor and window size.

1.4 Neural Renderer

The neural renderer in our work is similar to that in Learning-To-Paint [Huang et al. 2019]. The main difference is that
we discard the RGB and the transparency parameters, which are unnecessary in our task. The architecture is as follows:

Table 2. Architecture of neural renderer.

Layer Type Kernel Size Activation Function Output

Input - - 10
Fully Connected - ReLU 512
Fully Connected - ReLU 1024
Fully Connected - ReLU 2048
Fully Connected - ReLU 4096

Reshape - - 16 × 16 × 16
Convolutional 3 × 3 ReLU 32 × 16 × 16
Convolutional 3 × 3 - 32 × 16 × 16
Pixel Shuffle - - 8 × 32 × 32
Convolutional 3 × 3 ReLU 16 × 32 × 32
Convolutional 3 × 3 - 16 × 32 × 32
Pixel Shuffle - - 4 × 64 × 64
Convolutional 3 × 3 ReLU 8 × 64 × 64
Convolutional 3 × 3 - 4 × 64 × 64
Pixel Shuffle - Sigmoid 1 × 128 × 128
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2 DATASETS

2.1 Sketches for Vectorization and Rough Sketches Simplification

During training and evaluation, we use library gizeh 1 to render raster sketches with vector sequential points in
QuickDraw [Ha and Eck 2018] dataset. In training, we render sketches in multiple resolutions ranging from 128px to
278px. All the raster images are rendered on the fly during training. For different resolutions, we use different numbers
of sketch objects. For each object, we render it into different sizes with different line thickness, and then place them to
different position. All the information are shown below:

Table 3. Information of raster sketch rendering during training.

Resolution Object Number Object Size Position Line Thickness

[128, 172] 1 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 Center 3
(172, 225] 1 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 Center 3 or 4
(172, 225] 2 [128,𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 × 0.75] Random 3 or 4
(225, 278] 2 [128,𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 × 0.75] Random 3 or 4

During evaluation, we render sketches at four resolutions: 128px, 256px, 384px and 512px. All have only one object
in original size and line thickness 3. All the objects are placed in the center.

We use 10 categories for training: airplane, bus, car, sailboat, bird, cat, dog, tree, flower and zigzag. During evaluation,
we augment three categories: rabbit, circle and line.

2.2 Rough Sketches for Simplification

In rough sketches simplification task, we use the clean sketches for vectorization as target images and use the pencil art
generation technique in [Simo-Serra et al. 2018] to produce the rough sketches as input images. We use the released code
and model 2. There are two drawing styles from two artists, and we use both during training for better generalization.

2.3 Photograph to Line Drawing

There are face images and the corresponding segmentation masks in CelebAMask-HQ [Lee et al. 2020] dataset, which
contains 19 categories for the facial details. We discard categories (l_ear, r_ear, hair, hat, neck, ear_r, neck_l and cloth)
and adopt (skin, nose, eye_g, l_eye, r_eye, mouth, u_lip, l_lip, l_brow and r_brow). For mouth, u_lip and l_lip, we merge
their masks to form an entire shape. For l_brow and r_brow, we use skeleton extraction algorithm to convert them into
thin lines. The original size for face images is 1024px and annotated mask 512px. We resize them to both 256px for
training and testing. The facial sketches are obtained by applying canny edge detection algorithm to the mask image.
The canny edge is in 1-pixel width, and then morphological dilation method is employed to thicken the lines. Some
training or evaluation examples are shown as follows:

1https://github.com/Zulko/gizeh
2https://github.com/bobbens/sketch_simplification

https://github.com/Zulko/gizeh
https://github.com/bobbens/sketch_simplification
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Image Sketch Image Sketch Image Sketch Image Sketch

Fig. 2. Training or evaluation examples of photograph to line drawing.
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3 IMPLEMENTATION DETAILS

3.1 Avoid Recursive Gradient Propagation

When training the sequential model, some outputs from last time step are used as inputs for the next step, like the
canvas 𝐶 , cursor 𝑄 , etc. To avoid recursive gradient back-propagation, we break the gradients of all the inputs of CNN
encoder and the additional inputs of RNN decoder. Gradient breaking should also be done when updating the cursor 𝑄𝑡

and window size𝑊𝑡 in Eq. (4) in main paper, where gradients should not be propagated recursively from 𝑄𝑡 and𝑊𝑡 to
𝑄𝑡−1 and𝑊𝑡−1.

3.2 More about Training

For each experiment of our method, the training is done on 2 GPUs, each with different resolutions (except for
photograph to line drawing which is trained on images of single resolution).

3.3 Random Movement of Cursor during Testing

During testing or evaluation, in order to help the window slide to distant undrawn area more efficiently, the cursor is
randomly moved to another position. We use different strategies of random cursor movement for different types of
images:

Real Clean Sketches. Since the input clean sketches are also the target ones, we are able to detect the undrawn pixels
by comparing the target and the canvas. After each round of drawing, we first divide the full-size sketch and canvas
into several 128 × 128 grids, and calculate their number of undrawn stroke pixels and stroke drawing accuracy. Then,
when the stroke drawing accuracy of all grids is higher than 𝑘%, the drawing is stopped early without using up all
the rounds for drawing. Otherwise, we select the grid with the most undrawn stroke pixels, and move the cursor to a
random position inside that grid. 𝑘 = 95 is used in the experiments.

Rough Sketches and Photographs. Different from clean sketches, rough sketches and photographs cannot be used as
target during testing. So the cursor movement strategy is different from the one for clean sketches. We move the cursor
to a random position without any restriction.
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4 RESULTS

4.1 Effectiveness of Moving and Scaling

Figure 3 shows results of how to move, break the continuous strokes and slide to undrawn region. Figure 4 shows
results of how to enlarge the window to search for undrawn region, and then slide there with long strides. Figure 5
shows the window size distributions of our dynamic window-based model on vectorization task. In contrast, fixed-size
window-based model uses a window size of 128px. Visual comparisons between dynamic window-based model and
fixed-size window-based one is shown in Figure 6.

Input Output (vector) Stroke order Moving Trajectory Input Output (vector) Stroke order Moving Trajectory

128px

256px

384px

512px

Drawing order

Fig. 3. Results of moving, sliding and breaking.
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92 122 144 163 56 5065

91 118 138 95 93 9766

77 100 121 71 56 5558

132 136 133 85 82 7499

77 95 77 108 57 5470

55 66 86 91 58 5445

46 67 92 58 67 6042

58 59 79 89 102 6952

128px

256px

384px

512px

Input Intermediate canvases

Fig. 4. Results of window scaling. Red boxes represent the windows. Numbers on top right corner indicate the window size. Blue lines
are the slide trajectory which are not drawn finally.
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Fig. 5. Distributions of window sizes in our dynamic window-based model without stroke regularization. Here we only consider
windows used to draw strokes instead of sliding or breaking.

Input Fixed-size Ours (scalable) Input Fixed-size Ours (scalable)

128px

256px

384px

512px

Fig. 6. Comparisons between scalable/dynamic window-based model (ours) and fixed-size window-based one.
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4.2 Effectiveness of Differentiable Pasting

Figure 7 shows the distributions in model with or without differentiable pasting at a low and a high resolution on
vectorization task. Figure 8 shows how the model with non-differentiable pasting scales the window. Figure 9 shows
visual comparisons between differentiable and non-differentiable pasting.
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Fig. 7. Distributions of scaling factor values in model with differentiable or non-differentiable pasting. Here we only consider the
scaling values of windows used to draw strokes instead of sliding or breaking.
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Fig. 8. Window scaling of the model with non-differentiable pasting.
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Vector output 
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Input
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Fig. 9. Comparisons between differentiable (“diff.”) and non-differentiable (“non-diff.”) pasting.
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4.3 Ablation Study of Raster-level Loss

4.3.1 Other Raster Losses. Besides pixel-wise difference loss (𝐿1 difference) and perceptual loss, we also study adversarial
loss. For a fair comparison, we use perceptual loss as the base supervision loss and add it to the objective function of
generator. Out-of-bounds penalty loss and stroke regularization loss are also added to the objective function of generator
during training. Figure 12 shows visual comparisons among different raster losses. When adopting the adversarial loss,
no significant difference is observed from the visual results of different resolutions. Though there is slight improvement
in the quantitative results (Table 4), it is not significant enough. Given that an additional learnable discriminator leads
to higher training complexity, we discard the adversarial loss and use perceptual loss only.

Input L1 Adversarial Perceptual

128px

256px

384px

512px

Input L1 Adversarial Perceptual

Fig. 10. Comparisons among different raster losses.

Table 4. Quantitative results of different raster losses.

Raster Loss Perceptual score(↓) Chamfer distance(↓)

Perceptual 1.053 1.577
Perceptual + Adversarial 1.041 1.343
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4.3.2 Different Layer Combinations. Figure 11 shows visual results of model with different perceptual layer combinations
from VGG-16 [Simonyan and Zisserman 2015]. Table 5 shows quantitative results.

Input image Perc.12 Perc.12_22 Perc.12_22_33 Perc.22_33_51 Perc.33_51 Perc.51 Ours

Fig. 11. Comparisons among different perceptual layer combinations. Our model uses “Perc.12_22_33_51”.

Table 5. Quantitative results of different perceptual layer combinations. Our model uses ∪(12, 22, 33, 51) .

Perceptual Layers Perceptual score(↓) Chamfer distance(↓)

∪(12) 1.481 3.556
∪(12, 22) 1.399 3.242
∪(12, 22, 33) 1.058 1.219
∪(12, 22, 33, 51) 1.053 1.577
∪(22, 33, 51) 1.076 1.150
∪(33, 51) 1.513 2.995
∪(51) 1.764 4.079



General Virtual Sketching Framework for Vector Line Art
— Supplemental Material — 15

4.3.3 Loss Value Normalization. Figure 12 shows results from models with and without loss normalization. Model
without loss normalization is similar to model dominated by deep perceptual layers, which produces results with good
completeness but worse details.

Input W/O Norm. With Norm. Input W/O Norm. With Norm.

128px

256px

384px

512px

Fig. 12. Comparisons between models with and without loss normalization.
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4.4 Effectiveness of Out-of-Bounds Penalty

Figure 13 shows results on vectorization from model without out-of-bounds penalty. Clearly, we can see empty canvases
in the output results. The high out-of-bounds penalty loss (calculated but not applied to the total loss function) during
training explains the reason. The window in our model moves in a relative manner, so it is possible that the window
moves outside the valid region of input image. At the beginning of training, where the model hasn’t learned how to
draw well, it tends to move the window outside to produce an empty canvas so that a high raster loss can be avoided. To
this end, out-of-bounds penalty is necessary to tell the model not to do like this and make it learn to draw in a correct
direction.

Resolution Input Output Input Output Input Output

128px

256px

384px

512px

Fig. 13. Results of model without out-of-bounds penalty.
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4.5 Stroke Regularization

4.5.1 Redundancy Removal. After obtaining the output stroke data in vector format, we are able to detect the redundant
or overlapped strokes: we draw each stroke step by step onto the canvas. Then, for each new stroke, we calculate
its intersection with the already drawn pixel region. Finally, if the intersection area is larger than half of the stroke
area, we regard this stroke as an overlapped one. With this detecting method, we are able to remove the overlapped
strokes as a post-processing operation. Figure 14 shows the performance of redundancy removal with different stroke
regularization weights 𝜆𝑟𝑒𝑔 .

Drawing order

Input 𝜆𝑟𝑒𝑔 = 0.0 𝜆𝑟𝑒𝑔 = 0.02 𝜆𝑟𝑒𝑔 = 0.1 𝜆𝑟𝑒𝑔 = 0.2

Fig. 14. Redundancy removal of stroke regularization with different weights 𝜆𝑟𝑒𝑔 . Red strokes in the grayscale vector outputs
represent the redundant or overlap strokes.
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4.5.2 Compactness Improvement. Figure 15 shows the compactness improvement by stronger stroke regularization.

Stroke number: 55
Average length: 14.82 

Stroke number: 49
Average length: 16.08 

Stroke number: 36
Average length: 19.04 

Stroke number: 26
Average length: 26.13 

Stroke number: 56
Average length: 17.49 

Stroke number: 58
Average length: 16.96 

Stroke number: 44
Average length: 19.78 

Stroke number: 33
Average length: 25.62 

Stroke number: 72
Average length: 16.56 

Stroke number: 66
Average length: 19.32 

Stroke number: 62
Average length: 19.20 

Stroke number: 38
Average length: 30.27 

Stroke number: 132
Average length: 17.99 

Stroke number: 102
Average length: 23.78 

Stroke number: 99
Average length: 23.64 

Stroke number: 79
Average length: 30.00 

Stroke number: 116
Average length: 18.08 

Stroke number: 101
Average length: 20.05 

Stroke number: 88
Average length: 21.40 

Stroke number: 64
Average length: 28.86 

Input 𝜆𝑟𝑒𝑔 = 0.0 𝜆𝑟𝑒𝑔 = 0.02 𝜆𝑟𝑒𝑔 = 0.1 𝜆𝑟𝑒𝑔 = 0.2

256px

256px

256px

512px

512px

Fig. 15. Compactness improvement of stroke regularization with different weights 𝜆𝑟𝑒𝑔 . Larger weights means stronger regularization
(𝜆𝑟𝑒𝑔 = 0.0 indicates no regularization). Orange dots represent the endpoints of each drawn stroke.



General Virtual Sketching Framework for Vector Line Art
— Supplemental Material — 19

4.5.3 Parameter Sensibility. Figure 16 and Figure 17 show visual comparisons among different stroke regularization
weights 𝜆𝑟𝑒𝑔 . Model with a large 𝜆𝑟𝑒𝑔 suffers from bad completeness.

𝜆𝑟𝑒𝑔 = 0.0 𝜆𝑟𝑒𝑔 = 0.1 𝜆𝑟𝑒𝑔 = 0.2Input image (640px) 𝜆𝑟𝑒𝑔 = 0.02 𝜆𝑟𝑒𝑔 = 0.5 𝜆𝑟𝑒𝑔 = 1.0

Fig. 16. Comparisons among different stroke regularization weights 𝜆𝑟𝑒𝑔 .

𝜆𝑟𝑒𝑔 = 0.0 𝜆𝑟𝑒𝑔 = 0.1 𝜆𝑟𝑒𝑔 = 0.2Input 𝜆𝑟𝑒𝑔 = 0.02 𝜆𝑟𝑒𝑔 = 0.5 𝜆𝑟𝑒𝑔 = 1.0

Fig. 17. Comparisons among different stroke regularization weights 𝜆𝑟𝑒𝑔 .
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4.6 Vectorization

4.6.1 Qualitative Results. We compare with Learning-To-Paint [Huang et al. 2019] on sketches from QuickDraw dataset
of different resolutions and different stroke numbers. Results are shown in Fig. 18, Fig. 19 and Fig. 20. More results and
comparisons with existing vectorization methods on real clean sketches are shown from Fig. 21 to Fig. 27.

Input
(128px)

LTP 
5 strokes

LTP 
10 strokes

LTP 
16 strokes

LTP 
24 strokes

LTP 
32 strokes

LTP 
48 strokes

Ours
(vector)

Fig. 18. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on clean sketch vectorization.
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Input
(256px)

LTP 
16 strokes

LTP 
24 strokes

LTP 
36 strokes

LTP 
48 strokes

Ours
(vector)

Fig. 19. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on clean sketch vectorization.
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Input
(384px)

LTP 
16 strokes

LTP 
24 strokes

LTP 
36 strokes

Ours
(vector)

Fig. 20. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on clean sketch vectorization.
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Muten (1024px)
Fidelity-vs-Simplicity 
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 21. Comparisons with existing approaches on real clean sketch vectorization.
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Sheriff (1024px)
Fidelity-vs-Simplicity 
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 22. Comparisons with existing approaches on real clean sketch vectorization.
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Elephant (640px)
Fidelity-vs-Simplicity 
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 23. Comparisons with existing approaches on real clean sketch vectorization.
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Hippo (700px)

Fidelity-vs-Simplicity [Favreau et al. 2016] PolyVectorization [Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 24. Comparisons with existing approaches on real clean sketch vectorization.
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Penguin (720px)
Fidelity-vs-Simplicity 
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 25. Comparisons with existing approaches on real clean sketch vectorization.
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Banana tree (872px)
Fidelity-vs-Simplicity 
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 26. Comparisons with existing approaches on real clean sketch vectorization.
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Duck (887px)
Fidelity-vs-Simplicity 
[Favreau et al. 2016]

PolyVectorization
[Bessmeltsev et al. 2019]

Our results (vector) Stroke order

Drawing order

Fig. 27. Comparisons with existing approaches on real clean sketch vectorization.
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4.7 Rough Sketch Simplification

We compare with Learning-To-Paint [Huang et al. 2019] on “Rough QuickDraw” dataset of different resolutions and
different stroke numbers. Results are shown from Fig. 28 to Fig. 31. More results and comparisons with existing methods
on complex rough sketches are shown in Fig. 32, Fig. 33 and Fig. 34.

Input
(128px)

LTP 
10 strokes

LTP 
16 strokes

Ours
(vector)

Target

Fig. 28. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on rough sketch simplification.
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Input
(128px)

LTP 
10 strokes

LTP 
16 strokes

Ours
(vector)

Target

Fig. 29. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on rough sketch simplification.
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Input
(256px)

LTP 
36 strokes

Ours
(vector)

Target

Fig. 30. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on rough sketch simplification.
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Input
(256px)

LTP 
36 strokes

Ours
(vector)

Target

Fig. 31. Comparisons with Learning-To-Paint [Huang et al. 2019] (LTP) with different stroke numbers on rough sketch simplification.
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Rocket (384px) Sketch Simplification (pixel) [Simo-Serra et al. 2018] Sketch Simplification (pixel) + PolyVectorization

Our results (vector) Stroke order

Drawing order

PolyVectorization [Bessmeltsev et al. 2019]

Duck (512px) Sketch Simplification (pixel) [Simo-Serra et al. 2018] Sketch Simplification (pixel) + PolyVectorization

Our results (vector) Stroke orderPolyVectorization [Bessmeltsev et al. 2019]

Fig. 32. Comparisons with existing approaches on rough sketch simplification.
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House (384px) Sketch Simplification (pixel) [Simo-Serra et al. 2018] Sketch Simplification (pixel) + PolyVectorization

Our results (vector) Stroke order

Drawing order

PolyVectorization [Bessmeltsev et al. 2019]

Kitten (512px) Sketch Simplification (pixel) [Simo-Serra et al. 2018] Sketch Simplification (pixel) + PolyVectorization

Our results (vector) Stroke orderPolyVectorization [Bessmeltsev et al. 2019]

Fig. 33. Comparisons with existing approaches on rough sketch simplification.
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Car (512px) Sketch Simplification (pixel) [Simo-Serra et al. 2018] Sketch Simplification (pixel) + PolyVectorization

Our results (vector) Stroke order

Drawing order

PolyVectorization [Bessmeltsev et al. 2019]

Penguin (640px) Sketch Simplification (pixel) [Simo-Serra et al. 2018] Sketch Simplification (pixel) + PolyVectorization

Our results (vector) Stroke orderPolyVectorization [Bessmeltsev et al. 2019]

Fig. 34. Comparisons with existing approaches on rough sketch simplification.
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4.8 Photograph to Line Drawing

More results and comparisons with existing methods are shown in Fig. 35 and Fig. 36.

Input

Learning-To-Paint
[Huang et al.2019] Our results (vector) Stroke order

Drawing order

Photo-Sketching (pixel)
+ PolyVectorization

Photo-Sketching (pixel)
[Li et al. 2019]

Fig. 35. Comparisons with existing approaches on photograph to line drawing.
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Input

Learning-To-Paint
[Huang et al.2019] Our results (vector) Stroke order

Drawing order

Photo-Sketching (pixel)
+ PolyVectorization

Photo-Sketching (pixel)
[Li et al. 2019]

Fig. 36. Comparisons with existing approaches on photograph to line drawing.
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