
General Virtual Sketching Framework for Vector Line Art
— Supplemental Material —

HAORAN MO, Sun Yat-sen University, China

EDGAR SIMO-SERRA,Waseda University, Japan

CHENGYING GAO∗, Sun Yat-sen University, China

CHANGQING ZOU, Huawei Technologies Canada, Canada

RUOMEI WANG, Sun Yat-sen University, China

1 FRAMEWORK DETAILS

1.1 Stroke Representation

1.1.1 Width Factor Updating. The strokes are represented in a relative manner in our framework. That is, we need
to use the ending point of a stroke from last time step as the starting position for the next stroke, so that a quadratic
Bézier curve can be formed. Since the stroke representation 𝑎𝑡 in Eq. (1) in main paper contains the width factor𝑤𝑡 , we
need to use the width factor𝑤𝑡−1 from last time step as the width (𝑟0)𝑡 for starting position for the next Bézier curve
𝑞𝑡 , as shown in Eq. (3) in main paper.

Because of the scalable window in our model, the size of two consecutive windows might be different. As a relative
value based on the window size, when the width factor from last time step is used for the next window, it should be
scaled to adapt to the new window. Practically, we re-define the (𝑟0)𝑡 in Eq. (3) in main paper as:

(𝑟0)𝑡 = 𝑤 ′
𝑡−1, (1)

where𝑤 ′
𝑡−1 is the scaled width from last time step. The scaling process is:

𝑤 ′
𝑡 = 𝑤𝑡 × (𝑊𝑡−1/𝑊𝑡), 𝑤 ′

𝑡 = min(1.0,𝑤 ′
𝑡), (2)

where𝑊 denotes the window size and ·̂ the original values after relative scaling. min operations performing value
clipping is adopted to avoid the out-of-bounds issue. In the experiments, we set initial values𝑤 ′

0 = 0.01.

1.1.2 Differentiable Pen State Binarizing. The differentiable softargmax operation introduced in Section 3.2.1 is formu-
lated as:

softargmax(𝑥) =
∑
𝑖

𝑒𝛽𝑥𝑖∑
𝑗 𝑒

𝛽𝑥 𝑗
𝑖, (3)

where 𝑒𝑦𝑖∑
𝑗 𝑒

𝑦𝑗 is the standard softmax operation and
∑
𝑖 𝑧𝑖𝑖 is the expectation for the index of the maximum probability.

The 𝛽 is to raise the maximum value and lower the others for a more accurate index. We note that this operation is
a trade-off between accuracy and the intensity of gradients, which means a bigger 𝛽 leads to a smaller amount of
gradients.

∗Corresponding author.

Authors’ addresses: Haoran Mo, Sun Yat-sen University, Guangzhou, China, mohaor@mail2.sysu.edu.cn; Edgar Simo-Serra, Waseda University, Tokyo,
Japan, ess@waseda.jp; Chengying Gao, Sun Yat-sen University, Guangzhou, China, mcsgcy@mail.sysu.edu.cn; Changqing Zou, Huawei Technologies
Canada, Markham, Canada, aaronzou1125@gmail.com; Ruomei Wang, Sun Yat-sen University, Guangzhou, China, isswrm@mail.sysu.edu.cn.

1

2 Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang

1.2 Stroke Generator

1.2.1 CNN Encoder. Apart from the patches cropped from the input image ∈ R3×128×128 and canvas ∈ R1×128×128, as
well as the resized entire image ∈ R3×128×128 and canvas ∈ R1×128×128, we use the cursor position ∈ R2 as additional
input. The cursor position is tiled to spatial maps ∈ R2×128×128.

The architecture of CNN encoder is shown in Table 1. At the first layer of the encoder, we employ CoordConv [Liu
et al. 2018] to boost the encoding of spatial relation between global images and local patches. The image features
∈ R512×4×4 are flattened to feature vector ∈ R8192. Then a fully connected layer converts the feature vector to image
embedding 𝑧𝑡 ∈ R128.

Table 1. Architecture of CNN encoder.

Layer Type Kernel Size Stride Normalization Function Activation Function Output

Input - - - - 10 × 128 × 128
CoordConv - - - - 12 × 128 × 128

Convolutional 3 × 3 2 Instance Norm. ReLU 32 × 64 × 64
Convolutional 3 × 3 1 Instance Norm. ReLU 32 × 64 × 64
Convolutional 3 × 3 2 Instance Norm. ReLU 64 × 32 × 32
Convolutional 3 × 3 1 Instance Norm. ReLU 64 × 32 × 32
Convolutional 3 × 3 2 Instance Norm. ReLU 128 × 16 × 16
Convolutional 3 × 3 1 Instance Norm. ReLU 128 × 16 × 16
Convolutional 3 × 3 1 Instance Norm. ReLU 128 × 16 × 16
Convolutional 3 × 3 2 Instance Norm. ReLU 256 × 8 × 8
Convolutional 3 × 3 1 Instance Norm. ReLU 256 × 8 × 8
Convolutional 3 × 3 1 Instance Norm. ReLU 256 × 8 × 8
Convolutional 3 × 3 2 Instance Norm. ReLU 512 × 4 × 4
Convolutional 3 × 3 1 Instance Norm. ReLU 512 × 4 × 4
Convolutional 3 × 3 1 Instance Norm. ReLU 512 × 4 × 4

1.2.2 RNN Decoder. At each time step 𝑡 , the RNN decoder takes as input the image embedding 𝑧𝑡 ∈ R128 and
the previous hidden state ℎ𝑡−1 ∈ R256. In the implementation, besides the two factors above, we use the following
additional three inputs: (1) previous width factor𝑤𝑡−1 ∈ R for the prediction of𝑤𝑡 because the their corresponding
endpoints form a shared stroke; (2) previous cursor 𝑄𝑡−1 ∈ R2 to tell the model not to draw outside the full canvas;
(3) Δ𝑆𝑢𝑝

𝑡−1 =𝑊𝑡−1/𝑊𝐼 ∈ R and Δ𝑆𝑏𝑜𝑡𝑡𝑜𝑚
𝑡−1 =𝑊𝑡−1/𝑊𝑚𝑖𝑛 ∈ R to suggest the model not to scale the window beyond the

upper and bottom bound. The output 𝑜𝑡 ∈ R256 of RNN is then converted to stroke parameters 𝑎𝑡 ∈ R7 through a fully
connected layer.

General Virtual Sketching Framework for Vector Line Art
� Supplemental Material � 3

1.3 Coordinate System Change in Di�erentiable Pasting

Fig. 1. Aligned cropping and di�erentiable pasting.

In Fig. 1, we de�ne original image space as coordinate system�>>A3and the rendered (or cropped) patch space as

coordinate system�>>A30.&•, and&0•, 0denote the cursor/window size under�>>A3and�>>A30, respectively.F8=1

represents cropping window (black lines) in Fig. 1-(a), andF8=2 the one (black lines of yellow region) in Fig. 1-(b). For

example,, F8=1 = 3”7 and, 0
F8=1 = 2. Note that, 0

F8=1 = , A.

The aligned cropping operation depends on cursor and window size¹&F8=1•, F8=º from cropping windowF8=1

under the base coordinate�>>A3. So during pasting (i.e., another kind of aligned cropping), our goal is to compute

¹&0
F8=2•, 0

F8=2º for cropping windowF8=2 under�>>A30. This is done by �rst computing¹&F8=2•, F8=2º under�>>A3

and then conversing them to�>>A30. The computation steps are as follows:

(1) Position ofF8=1 under�>>A3: the top-left position%-
F8=1 and bottom-right position%&

F8=1 of F8=1 are:

%-
F8=1 = &F8=1 � , F8=1•2”0• %&

F8=1 = &F8=1 ¸ , F8=1•2”0” (4)

(2) Position ofF8=2 under�>>A3: F8=2 is the bounding box of rendered patch (dashed grid in Fig. 1-(b)) withinF8=1.

Its top-left and bottom-right positions are:

%-
F8=2 =

j
%-

F8=1

k
• %&

F8=2 =
l
%&

F8=1

m
” (5)

(3) Cursor and window size ofF8=2 under�>>A3: they are calculated according to the bounding box:

&F8=2 =
�
%-

F8=2 ¸ %&
F8=2

�
•2”0• , F8=2 = %&

F8=2 � %-
F8=2” (6)

(4) Changing from�>>A3to �>>A30:

&0
F8=2 =

�
, 0

F8=1•, F8=1
�

�
�
&F8=2 � %-

F8=1

�
•

, 0
F8=2 =

�
, 0

F8=1•, F8=1
�

� , F8=2”
(7)

4 Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang

After the coordinate system change for the cursor and size of windowF8=2 in Fig. 1-(b), di�erentiable pasting is

performed as an aligned cropping process, and produces the patch in yellow region. By padding the left pixels with

constant values, a pasted canvas in full resolution is obtained, which is able to propagate the gradients derived from the

raster-level loss to the �oating-number cursor and window size.

1.4 Neural Renderer

The neural renderer in our work is similar to that in Learning-To-Paint [Huang et al. 2019]. The main di�erence is that

we discard the RGB and the transparency parameters, which are unnecessary in our task. The architecture is as follows:

Table 2. Architecture of neural renderer.

Layer Type Kernel Size Activation Function Output

Input - - 10

Fully Connected - ReLU 512

Fully Connected - ReLU 1024

Fully Connected - ReLU 2048

Fully Connected - ReLU 4096

Reshape - - 16� 16� 16

Convolutional 3 � 3 ReLU 32� 16� 16

Convolutional 3 � 3 - 32� 16� 16

Pixel Shu�e - - 8 � 32� 32

Convolutional 3 � 3 ReLU 16� 32� 32

Convolutional 3 � 3 - 16� 32� 32

Pixel Shu�e - - 4 � 64� 64

Convolutional 3 � 3 ReLU 8 � 64� 64

Convolutional 3 � 3 - 4 � 64� 64

Pixel Shu�e - Sigmoid 1 � 128� 128

General Virtual Sketching Framework for Vector Line Art
� Supplemental Material � 5

2 DATASETS

2.1 Sketches for Vectorization and Rough Sketches Simplification

During training and evaluation, we use library gizeh1 to render raster sketches with vector sequential points in

QuickDraw [Ha and Eck 2018] dataset. In training, we render sketches in multiple resolutions ranging from 128px to

278px. All the raster images are rendered on the �y during training. For di�erent resolutions, we use di�erent numbers

of sketch objects. For each object, we render it into di�erent sizes with di�erent line thickness, and then place them to

di�erent position. All the information are shown below:

Table 3. Information of raster sketch rendering during training.

Resolution Object Number Object Size Position Line Thickness

»128•172¼ 1 $A868=0; Center 3

¹172•225¼ 1 $A868=0; Center 3 or 4

¹172•225¼ 2 »128•$A868=0;� 0”75¼ Random 3 or 4

¹225•278¼ 2 »128•$A868=0;� 0”75¼ Random 3 or 4

During evaluation, we render sketches at four resolutions: 128px, 256px, 384px and 512px. All have only one object

in original size and line thickness 3. All the objects are placed in the center.

We use 10 categories for training: airplane, bus, car, sailboat, bird, cat, dog, tree, �ower and zigzag. During evaluation,

we augment three categories: rabbit, circle and line.

2.2 Rough Sketches for Simplification

In rough sketches simpli�cation task, we use the clean sketches for vectorization as target images and use the pencil art

generation technique in [Simo-Serra et al. 2018] to produce the rough sketches as input images. We use the released code

and model2. There are two drawing styles from two artists, and we use both during training for better generalization.

2.3 Photograph to Line Drawing

There are face images and the corresponding segmentation masks in CelebAMask-HQ [Lee et al. 2020] dataset, which

contains 19 categories for the facial details. We discard categories (l_ear, r_ear, hair, hat, neck, ear_r, neck_l and cloth)

and adopt (skin, nose, eye_g, l_eye, r_eye, mouth, u_lip, l_lip, l_brow and r_brow). For mouth, u_lip and l_lip, we merge

their masks to form an entire shape. For l_brow and r_brow, we use skeleton extraction algorithm to convert them into

thin lines. The original size for face images is 1024px and annotated mask 512px. We resize them to both 256px for

training and testing. The facial sketches are obtained by applying canny edge detection algorithm to the mask image.

The canny edge is in 1-pixel width, and then morphological dilation method is employed to thicken the lines. Some

training or evaluation examples are shown as follows:

1https://github.com/Zulko/gizeh
2https://github.com/bobbens/sketch_simpli�cation

6 Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang

Fig. 2. Training or evaluation examples of photograph to line drawing.

General Virtual Sketching Framework for Vector Line Art
� Supplemental Material � 7

3 IMPLEMENTATION DETAILS

3.1 Avoid Recursive Gradient Propagation

When training the sequential model, some outputs from last time step are used as inputs for the next step, like the

canvas� , cursor&, etc. To avoid recursive gradient back-propagation, we break the gradients of all the inputs of CNN

encoder and the additional inputs of RNN decoder. Gradient breaking should also be done when updating the cursor&C

and window size, C in Eq. (4) in main paper, where gradients should not be propagated recursively from&Cand, C to

&C� 1 and, C� 1.

3.2 More about Training

For each experiment of our method, the training is done on 2 GPUs, each with di�erent resolutions (except for

photograph to line drawing which is trained on images of single resolution).

3.3 Random Movement of Cursor during Testing

During testing or evaluation, in order to help the window slide to distant undrawn area more e�ciently, the cursor is

randomly moved to another position. We use di�erent strategies of random cursor movement for di�erent types of

images:

Real Clean Sketches.Since the input clean sketches are also the target ones, we are able to detect the undrawn pixels

by comparing the target and the canvas. After each round of drawing, we �rst divide the full-size sketch and canvas

into several128� 128grids, and calculate theirnumber of undrawn stroke pixelsandstroke drawing accuracy. Then,

when the stroke drawing accuracy of all grids is higher than: %, the drawing is stopped early without using up all

the rounds for drawing. Otherwise, we select the grid with the most undrawn stroke pixels, and move the cursor to a

random position inside that grid.: = 95is used in the experiments.

Rough Sketches and Photographs.Di�erent from clean sketches, rough sketches and photographs cannot be used as

target during testing. So the cursor movement strategy is di�erent from the one for clean sketches. We move the cursor

to a random position without any restriction.

8 Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang

4 RESULTS

4.1 E�ectiveness of Moving and Scaling

Figure 3 shows results of how to move, break the continuous strokes and slide to undrawn region. Figure 4 shows

results of how to enlarge the window to search for undrawn region, and then slide there with long strides. Figure 5

shows the window size distributions of our dynamic window-based model on vectorization task. In contrast, �xed-size

window-based model uses a window size of 128px. Visual comparisons between dynamic window-based model and

�xed-size window-based one is shown in Figure 6.

Fig. 3. Results of moving, sliding and breaking.

	1 Framework Details
	1.1 Stroke Representation
	1.2 Stroke Generator
	1.3 Coordinate System Change in Differentiable Pasting
	1.4 Neural Renderer

	2 Datasets
	2.1 Sketches for Vectorization and Rough Sketches Simplification
	2.2 Rough Sketches for Simplification
	2.3 Photograph to Line Drawing

	3 Implementation Details
	3.1 Avoid Recursive Gradient Propagation
	3.2 More about Training
	3.3 Random Movement of Cursor during Testing

	4 Results
	4.1 Effectiveness of Moving and Scaling
	4.2 Effectiveness of Differentiable Pasting
	4.3 Ablation Study of Raster-level Loss
	4.4 Effectiveness of Out-of-Bounds Penalty
	4.5 Stroke Regularization
	4.6 Vectorization
	4.7 Rough Sketch Simplification
	4.8 Photograph to Line Drawing

	References

